Measure Theory with Ergodic Horizons Lecture 19

Iconf. Let
$$X_n := \{x \in X : |F(k)| \le n\}$$
, hence $X = \bigcup X_n$ (excluding a call set, which
we is note), so $\psi_{|F|}(X_n) \nearrow \psi_{|F|}(X)$, i.e. $\int |F| d\mu \nearrow \langle M$, hence
 $\int |F| d\mu < 4$ for large enorgh $n \in \mathbb{N}$.
 $X \setminus X_n$
 $X \setminus X_n$
 Mus , $\int \int F d\mu = \int F d\mu = \int F d\mu \le \int |F| d\mu < 2$.
 $X_n \times X_n$
 $X \setminus X_n$
 Mus , $\int \int F d\mu = \int F d\mu \le \int |F| d\mu < 2$.
 $X \setminus X_n$
 Mus , $\int \int F d\mu = \int F d\mu \le \int |F| d\mu < 2$.
 $X \setminus X_n$
 Mus , $\int \int F d\mu = \int F d\mu \le \int |F| d\mu < 2$.
 $X \setminus X_n$
 Mus , $\int \int F d\mu = \int F d\mu \le \int |F| d\mu < 2$.

$$\mu$$
 is absolutely continuous with respect to ν , and write $\mu \ll \nu$, if the null sets
of ν are also null sets of μ , i.e. if $\nu(B) = 0$ here $\mu(B) = 0$.
We say that μ and ν are equivalent if $\mu \ll \nu$ and $\nu \ll \mu$, i.e. they have
the same null sets.

Example. For each
$$f \in L^{+}(X, \mu)$$
, $\mu_{f} \ll \mu$ beaux if $\mu(B) = 0$ then $\mu_{f}(B) = \int_{B} f d\mu = \infty \cdot \mu(B) = 0$.

Applying this to
$$\mu \ll \mu$$
, we get:
(or. For each fell(X, μ) we have $\forall \varepsilon = 0 \exists \delta > 0$ such that
 $\mu(B) < \delta \implies \int |F| d\mu < \varepsilon$
For all μ -measurable $B \leq X$.

Horavic, hun
$$\mathfrak{d}$$
 a ubsequence, e.g. $(f_{2n})_{n \in \mathbb{N}}$, but converges to D a.e.
There and this is charges true:
Theorem let $\mathfrak{f}_n, \mathfrak{f} \in L^1(X, p)$. If $\mathfrak{f}_n \to \mathfrak{f}_n$ then $\mathfrak{f}_{n_k} \to \mathfrak{f}$ are the same subsequence.
To prove this, we will study an intermediate wobion of convergence, which is useful in its
own eight: convergence in measure.
Def. let (X,p) be a measure space and $\mathfrak{f}_{\mathcal{f}} \mathfrak{g} : X \to \mathbb{R}$ processing the third does for each $d > 0$,
 $pn!$ $\mathfrak{Q}_n(\mathfrak{f},\mathfrak{g}) := \{\mathfrak{f}_n \in X : |\mathfrak{f}(\mathfrak{h})| \neq d\}$
 $\mathfrak{f}_n(\mathfrak{f},\mathfrak{g}) := \mathfrak{f}_n \in X : |\mathfrak{f}(\mathfrak{h})| \neq d\}$
Note. For processing the sets $A, B \subseteq X$, $\mathfrak{O}_n(\mathfrak{I}_n,\mathfrak{I}_n) = A \oplus \mathfrak{f}_n$ all $\mathfrak{A}(\mathfrak{e}(\mathfrak{g},\mathfrak{l}) = \mathfrak{h}(A \oplus \mathbb{R})) = d\mathfrak{g}(A, \mathbb{R})$ is our usual pseudo-metric, for all $\mathcal{A}(\mathfrak{e}(\mathfrak{g}))$

The functions by are not even pseud-metrics because the triangle inequality
fails: let
$$f = 0$$
, $g = 1$, $h = 2$, then $J_2(f, s) = 0 = J_2(g, h)$ but $J_2(f, h) = \mu(x)$.
However, the following "additive" version of triangle inequality holds:

Pcop (Quasi-D-inequality for J). For all d, B>O, and fig, h pr-measurable faue

tions, we have
$$\Delta_{d+\beta}(f,h) \leq \Delta_{d}(f,g) \lor \Delta_{\beta}(g,h)$$
. In particular:
 $\int_{d+g}(f,h) \leq \int_{d}(f,g) \neq \int_{\beta}(g,h)$.
Proof. For each $x \notin X$,
 $x \in \Delta_{d+g}(f,h) \leq |F(x) - h(x)| \Rightarrow d+\beta \implies |F(x) - g(x)| \neq |g(x) - h(x)| \Rightarrow 2 \neq \beta$
 $\implies |f(x) - g(x)| \Rightarrow d \text{ or } |g(x) - h(x)| \Rightarrow 2 \neq \beta$
 $\implies |f(x) - g(x)| \Rightarrow d \text{ or } |g(x) - h(x)| \Rightarrow \beta$.
 $\leq x \notin \Delta_{d}(f,g) \lor \Delta_{\beta}(g,h)$.

Def. let (f.),
$$f$$
 be precessive ble functions. We say that (f.) converges to f in measure,
and write $f_n \rightarrow p f$, if $\delta_{\alpha}(f_n, f) \rightarrow 0$ for each $d \ge 0$, i.e. for each $d \ge 0$,
 $\mu(\{x \in X : |f_n(k) - f(k)| \ge d\}) \rightarrow 0$ as $n \Rightarrow \infty$.

Examples.
(a) let
$$f_{n}:=\frac{1}{d} \prod_{\{n, n\neq 1\}}$$
, then $f_{n} \rightarrow 0$ pointwise, but not in l' (because $||f_{n}-0||_{i}=\frac{1}{d} \forall h$)
and not in measure (because $\delta_{y_{2}}(f_{n}, 0)=1 \forall h$).
for f_{2} f_{1} f_{2} f_{2} f_{3} e_{1} e_{2}
(b) $ht f_{n}:= n \cdot \prod_{\{0, 1/n\}}$. Then $f_{n} \rightarrow 0$ pointwise and in measure (because f_{1} $\delta_{y_{1}}(f_{n}, 0) \leq \frac{1}{n} \forall d \geq 0$), but not in l' (because $||f_{n}-0||_{i}=1 \forall h$).
0 1

